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molecular integrals over orthogonal hybrid orbitals used in "'neglect of 
differential overlap" schemes. 
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1. Introduction 

It has been shown elsewhere that, for both conceptual [11 and numerical [2, 3] 
reasons, the so-called "neglect of differential overlap" (NDO) schemes for the 
approximate calculation of molecular electronic structure perform most satis- 
factorily when a basis of orthogonalized hybrid atomic orbitals (OHAOs) is used. 
Using this orthogonalized, localized basis the neglected many-centre repulsion 
integrals (for example) are indeed very small. We are assuming here that "neglect of 
differential overlap" actually means "simulation of an orthogonal basis". That 
this is so can be seen most clearly by consideration of the values of the ]~'s (off- 
diagonal one electron matrix elements) used in these approximation schemes. The 
values of the/Ts are typical of an orthogonal basis, being generally only a fraction 
of the non-orthogonal basis values (-0.268 and -4.869 a.u. respectively for the 
C-H bond of CH20, for example). Thus the OHAO basis to a large extent validates 
the NDO schemes. 

Molecular integrals required for the performance of any orbital basis calculation in 
the NDO approximation (MO, VB, CI) are 

Hrr= ; a~(~rf~r (1) 

~ =  f d~,.f~s (2) 
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where 

v2- Z 

(I? is the "core potential" for centre e). 

9rs:  f d v l  Idv2q52(1) 1 ~:(2) (3) 
J r 1 2  

(for r = s and r # s) 

and possibly 

f dVl f dv2(o.(1)gas(1)!r12 qSt(R)qSu(2 ) (4) 

when ~br, qS,, ~b,, qS. are centred on the same nucleus. In Eqs. (1-4) symbols with an 
upper"bar"  represent quantities defined with respect to an orthogonalized (hybrid) 
basis, the corresponding quantities with no "bar"  refer to a non-orthogonal (hybrid) 
basis. Thus y,, and 9,~ denote the repulsion integral between charge densities r r 
and between q52, ~2 respectively. 

This paper is a report of  a systematic way of  approximating the integrals H,,,  H,~, 
9r, and 9~s- 

The ab initio calculation of  these integrals is not a trivial matter since the standard 
methods of integral evaluation are all for the non-orthogonal AOs (or HAOs) and 
the transformation to an orthogonal basis means, for example, that any one ~s may 
involve all m 4 (for m AOs) of  the integrals 

(ij, kl)=fdv~fdv2r162162 (5) 

over the non-orthogonal basis since 

9,.~ = Y', V,. Vj,. Vks V,~(ij, k l )  (6) 
i , j , k , l  

where V is the matrix of  the transformation AOs - ,  OHAOs. 

f f  the N D O  schemes are to have any computational value, it is necessary to have 
methods o f  obtaining the integrals (1-3) (at least) directly i.e. not involving trans- 
formations like (6). 

In the case of electron repulsion integrals the standard approach has been to ignore 
the effect of orthogonalization on these integrals - to ignore the difference between 
7rs and 9rs" a 

This approximation is based on the fact that as qS, q~, --, 0 then 9,s ~ 7~,. But the 
essence of the conventional interpretation of orbital theories of  valence is that the 

1 In fact,  m u c h  coarse r  a p p r o x i m a t i o n s  are in cur ren t  use for 'Tr~ - the use of  y,~ is merely  the best  
a p p r o x i m a t i o n  in large-scale  use. 
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overlap density ~)r49s (or ~b~ qS,) is not zero. The simplifications brought about by the 
use of an orthogonal basis are due to the fact that, in such a basis, the overlap density 
integrates to zero. Examination of any set of electron repulsion integrals is sufficient 
to show that, in the all-important region around equilibrium internuclear distances 
(a-a overlap around 0.7) there are differences of up to 20~ between the y,~ and ~7~. 

The effect of orthogonalization on the Hrr, H~s is also not negligible - in particular 
zq~ is usually much smaller in magnitude than H~s and/q,~ is normally smaller 
than H~r. That orthogonalization should have a dramatic effect on the H~ values 
is easily seen from Fig. 1 which is a schematic diagram of the effect of symmetrical 

Fig. 1. Effect of symmetrical orthogonalization on 
an sp 3 HAO (schematic): (I) ~b 1 (q~2 dotted); (II) 
~b~; (TIT) ~ ;  (IV) (~  

(I} 01) 

(/IT) (N)  

orthogonalization on a n  sp 3 hybrid involved in a C - H  bond. The squares of the 
HAOs and OHAOs (which are involved in Hrr and ~r,) are much more similar than 
are the orbitals q~r and ~ themselves. The HAO ~ has a large negative "lobe" 
added on orthogonalization while the square qS~ simply has a steep "valley" im- 
posed on its principal lobe. Thus, we might expect that molecular integrals involving 
(~ as such in the integrand are likely to be much more affected by orthogonalization 
of the basis than those involving the squares of the HAOs, q52. Presumably these 
latter types of integral will have similar values in the HAO and OHAO basis. 

In previous work [2] we have suggested that for the reasons outlined above, it is 
better to compute the one-electron integrals and seek approximations for the Yrs- 
However, this may be too pessimistic a view since, as we have just seen, the H~, may 
well be capable of approximation in terms of the Hrs. Further, in the investigation 
of the electronic structure of large and complex polyatomic molecules (e.g. transi- 
tion metal complexes) even the calculation of the _H,r and H,s is a heavy computa- 
tional problem because of the necessity of including the effect of large numbers of 
"core" electrons. 

In the past many of these computational difficulties have been avoided by the use of 
experimental (atomic) quantities in place of the integrals (1~4) (or parts of these 
integrals) and by the use of "invariance principles" which are now known to be 
unrealistic [1]. The use of experimental data is certainly an attractive proposition 
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but, unfortunately, it is associated with unavoidable difficulties of interpretation. 
The separations observed between atomic energy levels which are often schemati- 
cally interpreted at a qualitative level as electron-repulsion (Slater-Condon) 
parameters are determined quantitatively by the detailed interactions between the 
electrons. These "atomic integrals" obtained from an analysis of atomic spectral 
data contain a numerical measure of all kinds of physical effects : mean (Hartree- 
Fock) repulsions, electron correlations, relativistic effects etc. The numerical 
values of these parameters, although useful for comparative studies and the extra- 
polation and interpolation of molecular energies, may well not be compatible with 
any explicitly stated orbital basis. That is, the charge density (for example) obtained 
from a calculation using these "integrals" may well be uninterpretable. 

From the point of view of agreement with experiment, the inclusion of (e.g.) 
correlation effects may be thought to be an advantage rather than a shortcoming 
because, of course, electron correlation effects are actually occurring in molecules. 
But this is only conceivably true if the model used specifically excludes correlation 
effects: the MO model. What are we to make of (e.g.) a CI calculation using these 
integrals ? If we include electron correlation in the formulation of our model (VB, 
CI, MCSCF) then what is the role of electron repulsion integrals "containing cor- 
relation effects"? Have we counted correlation twice ? Further, how are we to 
interpret the computed charge density, orbital energies etc. ? We may well be in the 
position of having computed a correct molecule energetic property (barrier to 
rotation, for example) and produced a spurious explanation of the phenomenon! 
For these reasons we prefer to work with molecular integrals which are (at least in 
intention) integrals over an explicitly stated "atomic orbital" basis. 

2. Pairwise Overlap, Symmetrical Orthogonalization and the Mulliken Approxi- 
mation 

The use of a basis of hybrid atomic orbitals which reflect the likely bonding scheme 
in a molecule has an important advantage in the study of the orthogonalization 
procedure. For o- bond systems each HAO has a large overlap with just one other 
orbital - its ~bonding partner" in the classical bonding scheme. The overlap inte- 
grals with other HAOs are generally much smaller. Thus, it is a good approxima- 
tion to treat each "bonded pair" of orbitals as only overlapping with each other. 
Two HAOs q51, q52 generate an overlap matrix 

where S is much larger (typically 6 or 7 times) than the overlap of q~l o r  ~b z with any 
other HAO in the molecule. The L6wdin orthogonalization matrix is given by: 

FV11 V,2] 
s-'J2= v= LV21 v22j (8) 
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where 

1 vii=v22=2 s+,/l+ s) 

1 ( x ~ - S -  x/1 + S) (9) G2 = v21 = 2 . , / ~  3 

The OHAOs ~bl, ~D 2 a r e  given by 

(4,~, r 42)v (10) 
Expanding the product (~l~b2 using (9) and (10) we find 

1 [  , ] 
4,42=(1_-~)  r  (4~+~)  (11) 

If we now make the Mulliken approximation for the HAO overlap density ~bl~b2 : 

q~lq~2 =S(~  b2 + 4~) (12) 

we see that 

q~ lq~2 ~--~ 0 (13) 

That is, the use of the Mulliken approximation followed by symmetrical ortho- 
gonalization is completely consistent with "Neglect of differential overlap" (NDO) 
approximations - the three techniques form a self-consistent set [4]. We now turn 
to the consequences of this simple fact for the molecular integrals retained in an 
NDO scheme. 

In the past the series expansion of S-  ~/2 (in powers of M, the off-diagonal part of S) 
has been used to justify numerical approximations. 

S -  1/2(1 + ~Ar~- 1/2 _ 1 1 Aat2_ 3 ~lat2 _ 5  " " ~  - -  * - - ~ " - -  8 "  16 m 3 + " "  

This expansion technique works well when the elements of M are small: three 
terms give an accuracy of better than 1% for a typical rc-~ overlap of 0.25. However, 
for a-a HAO overlaps (0.64).8), as many as twelve tofifteen terms in the expansion 
are needed to obtain S -  t/2 to two places of decimals. Clearly, the series expansion 
of S -  ~/2 is of little value in obtaining comparative sizes of integrals involving a 
orbitals. 

3. One-Electron Integrals 

If 

H,,= f dv(arf~(G (14) 
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the HAO one-electron ("core") integrals and the corresponding OHAO are 
integrals are denoted by Hrs: 

d 
then, using (9) and (10) we have 

- - , / 1 - s 2 ) -  Ham S2)+H2z(1 2SHoe j (15) 

- 1 {Hi2 S(Hll+Hz2) } (16) 

- l{H22(l+x/l_S2)+Hll(l_x/l_S5)_2SH12} H22 -2(1 -S~)  

Now the one-electron Hamiltonian is a combination of an essentially operator 
term (-�89 2, the kinetic energy operator) and a potential energy term which is a 
multiplying factor (l? say): 

/~= -�89 2 + I ? (17) 

Thus 

H~=T,~+V~ 
where 

and 

and the corresponding definitions hold for Tr~ and Frs. But, if V is simply multi- 
plicative 2 then we can use the Mulliken approximation and we have 

;avC,#c2=fd, 
i.e. 

S 
V~2 --=~ (V~ 4- Vz2) (19) 

It is readily seen, that when (18) and (19) are substituted into (16) (or directly from 
(13)) that the only remaining term is T 12, 

1 { S(T11+T22)} (20) !~12 = T12 = ( l  _ $ 2  ) T 1 2 - - ~  

2 An exact 17 would contain non-local core/valence exchange potentials but their effects are small. 
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The astonishing conclusion is that, using 

1) a pairwise overlapping HAO basis 
2) the Mulliken approximation 

and 3) symmetrical orthogonalization 

the all-important bonding integrals H,s (the fl's) have no  p o t e n t i a l  e n e r g y  c o n -  

t r i b u t i o n  

fl, s = Ls= f 

This result is astonishing on two counts: 

and 

(21) 

1) If  it holds up numerically it is an extremely powerful way of computing 
the Hrs integrals-  traditionally the most difficult and most frequently 
parametrized molecular integrals. The one- and two-centre kinetic 
energy integrals are easy to evaluate; they reduce to a sum of overlap 
integrals. 

2) Equation (21) throws some light on the physical nature of  the OHAO 
basis and the important role played by kinetic energy on bond formation 
(Tt2 is negative for positive S, while T12 is positive). 

Fig. 2. Approximations for l~12 for 
Mn O (sp 3 hybrids): full line, exact 
calculation; large dashed line Eq. 
(22) small dashed line T12. (The 
vertical line indicates the Mn O 
distance in MnO~ .) 
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As regards 1), Fig. 2 shows a plot oft~12 against internuclear distance for an Mn -O  
fragment. The two HAOs are s p  3 hybrids along the internuclear axis with opti- 
mum 4s and 2s exponents respectively. A point-charge approximation has been 
made for the atomic "cores". The point in question here is not, of course, how 
realistic this fragment is, simply how well Eq. (20) works numerically. For  com- 
parison purposes the Wolfsberg-Helmholtz-like approximation 

- -  S - -  

H,  2 = ~  (H,1 +/]22) (22) 

is plotted on the same figure.3 The surprising conclusion is that (20) performs rather 

3 Strictly speaking, there are a number of ways of using (22); e.g. using H n in place of Er, or only the 
one-centre parts of Hg~ or Er,. All these results are similar the curve plotted is representative. 
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well in practice; rather better than some conventional approximations. The figure 
also shows one of the disadvantages of formulae of the general form 

- S (X ,  + X 2 )  
H12 = ~  

where X1, X 2 are characteristic of qS~, Cz : the sign of Hlz is determined by the sign 
of S. This is not true in general, for short internuclear distances we may have 
S<0,  H12 <0 using an HAO basis. 

The use of the kinetic energy integral as a bonding parameter might be felt to be odd 
in view of the fact that, in the familiar HAO basis, the kinetic energy integrals are 
normally positive. However, it is easy to verify that, for s-type STOs at least, 

S 
T12 < ~  ( r l l  + T22) 

i.e. (20) is always negative. A conjectured "theorem" might be therefore: if S< 0 

1.0 
0 

-0.2 

-0.4 

-0A 

-0,1 

R [o..u] 
2.0 3.0 4.0 

'c'-c c• .... - ' ' ' ~  
I ...,,,~-~ . . . . .  / - f  
1 ... . .  71  / -  

. . . . . . . .  I / I / "  
- " "  i / I.,." 

V ,."[ 

/V" i 
/,/I f 

f i  i 
,,Y ! ! [ Fig. 3. Comparison of TlZ with the standard CNDO 

approximation for R12 for 2s orbitals of carbon: full 
line exact; large dashed line CNDO; small dashed line 
T12. (The two vertical lines show the range of C-C 
distances in organic molecules.) 

then T12 <0. Fig. 3 shows the use of (20) for a C-C fragment compared to the 
CNDO [5] H,2 formula. 

The interpretation of (21) has something in common with Linderberg's [-6] formula 
for the/?'s of n-electron theory: 

H~= f dvr 
This expression has only a "kinetic energy" contribution. However the derivation 
and justification of Linderberg's formula are quite different from our approach. 

Returning to Eq. (15) we can now study the application of the Mulliken approxi- 
mation to the diagonal one-electron integrals Hrr. NOW it is welt known that the 
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Mulliken approximation is at its best when the charge distribution q~q~2 is 
non-polar: 

S 
4~lq~2=ar with a=b=~ 

Thus, using H 11 = H 2 2  in (15) for the most favourable case, we have 

1 
f l l l  - -  (1 - S 2) { 1 ( H i  t + H22) - SHx 2 } (23) 

Again, using Eq.(17) to separate kinetic and potential energy and using (19) we 
have 

H11=T11--~V11 (24) 

The diagonal elements of the one-electron potential energy operator are unchanged 
by symmetrical orthogonalization. The constraints under which (24) was derived 
are 1)-3) aboveplus equality of Hal and H22. If Hi1 and H22 are different we can- 
not recover (24) formally but we do not expect that Vt t and V 1 t will differ very 
much numerically, if the magnitude of the difference between H~ 1 and H22 is not 
too great. Fig. 4 shows the variation of H11 and T11 '~ V11 for the Mn-O fragment 
used in Fig. 2. The computational advantage of V 11 ~ VI ~ is, of course, that V 1 
only involves one- and two-centre molecular integrals over the HAO basis. 

Eq. (24) also has a physical interpretation. The main change occurring on ortho- 
gonalization is the change T1 t ~ Ta a and, in general, it is found that T,, > T,, i.e. 
since V~ is negative, _~,~ > H~, (]H,, [< ]H, ]). Thus the principal atomic effect of 
symmetrical orthogonalization is to increase the atomic kinetic energy. These 
results present a tempting analogy with Ruedenbergs [-7] result that bond forma- 
tion is accompanied by an increase in atomic kinetic energy (Tt~ > T~I) and a 
decrease in the kinetic energy in the bond regions (T12 < T12 ). In a sense therefore, 
symmetrical orthogonalization mimics the atomic electron rearrangements 

Fig. 4. Effect of symmetrical ortho- 
gonalization on Hll  for M n - O  (sp 3 
hybrids) : full line exact; small dashed 
line T 11 + Vll (vertical line as for 
Fig. 2) 
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occurring on molecule formation: the ~ contraction" effects stressed by 
Ruedenberg in his analysis of the chemical bond. 4 

If  H a i and H22 do differ significantly enough for the simple Eq. (23) to be suspect 
(large differences in the electro negativities of 051 and 052, for example), then V11 and 
V 1 a will differ appreciably. In fact, using (1 5) we have 

AV 
V l l :  VAv-~ 2x/1 --S 2 

A V (25) 
v22= VAv 21/ __s 2 

where VAv=�89 1/22) and AV=�89 The relative accuracy of the 
approximations can be judged for the two valence AOs of LiH (05 ~ = l SH, r = 2SLi). 

Eq. (24) gives ~q ~ 1 = - 0.5075 ; H22 = - -  0.7514 
Eq. (25) gives H11 = -- 0.4600; H 2 2  ---~ - -  0.8009. 

The exact integrals are Er 1 ~ = - 0.4594;/722 = - 0.8023. 
For completeness T~ 2 = - -  0.1211 while the exact H~ 2 is - 0.1181. Fig. 4 shows the 
variation in T 11 + V~ ~ for the Mn-O fragment of Fig. 2. 

Thus the use of the (self-consistent) scheme of pairwise-overlapping HAOs, the 
Mulliken approximation and symmetrical orthogonalization provides a con- 
venient scheme for the non-empirical evaluation of one-electron integrals over an 
orthogonalized basis. 

4. Electron Repulsion Integrals 

The Mulliken approximation 4)1 4)2 = 0 means that the one- and two-centre repul- 
sion integrals are the main two-electron integrals to be evaluated within an NDO 
framework. Using the Mulliken approximation for 05 a 052 the relation between the 
HAO integrals and the OHAO values are: 

912 = A'~12 --BTAv 

911 =AVAv-- B712 + CAy 

922 =ATAv-- B 7 1 2  - -  CA~ (26) 

where 

A =  1 + ~ 5  ; B = 2 (  1 _ $ 2 ~  ' C - / 1 _ S ~  

4 These comparisons need further study since, as presented here, they are only analogies: 
orthogonalization is not a phenomenon but a technical device used in orbital basis theories whereas 
Ruedenberg's results are, of  course, physical. However it is worth pointing out that symmetrical 
orthogonalization always leads to "orbital contraction" in the sense of  decreasing ( r )  (the mean value 
of the distance from the nucleus of  an AO). 
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and 

1 
7Av =](711 -~- 722), A]~ = (711 - 722)/2 

Now (26) includes the use of the Mulliken approximate twice and the errors in (26) 
are therefore likely to be those of the Mulliken approximation "squared". In fact 
the numerical performance of (26) is quite good but falls off quite badly with large S. 
It is well known from a number of empirical studies [2, 3] that the relation between 
7rs and ~,s is rather closer than (26) would suggest: typically 9rs < Yr~ the difference 
being rarely larger than 20~ even for S~0.8.  Similarly ~ , > 7 ,  with changes in 
value of up to 20~. That is, as has been emphasized elsewhere [2, 3] an approxi- 
mate relationship of the form 

~rs=(1-a)7~s ; 9 , = ( 1  +a ' )7 ,  

holds to a good approximation for a given bonded pair q~, ~b s. Now a, a' must be 
functions o fS  2 (at least !) since the sign of S has no effect on the transition from 7 to 
9. It is already evident that the coefficients A, B and C do indeed depend on S 2. In 
order to a relationship of the form (e.g.) 

9rs =f(S2)7rs ; 9rr =g(S2)7rr 

it is therefore necessary to make some assumption about an approximate relation- 
ship between 712 and 7av in (26). This relationship need only hold where S is 
appreciable and, in particular, should go over to unity for S = 1. The simplest pos- 
sible assumption which meets the requirements is: 

~/l +S2"  

if we use this expression in (26) and set A7 ~0  we obtain 

S 2 
911--1 - 1 S 2 { 1 - ~ - ( 3 q - $ 2 ) } 7 1 1  

~ z 2 = 1 _ $ 2  1 - ~ - ( 3  +$2)  722 

and 

These formulae work extremely well for a whole range of overlaps. The formula 
for ~12 is particularly accurate: Figs. 5 and 6 show the use of (27) for some repre- 
sentative integrals. It must be stressed that nowhere do we use the approximation 
712 '~ (1 + 82)7Av/2 for the calculation of 7 t z: it is simply a device for obtaining an 
approximation for the dependence of 9 , ,  9~ on S in the region of large S. 

In line with our general considerations based on Fig. 1 it is readily seen from 
Eqs. (27) that the electron repulsion integrals 9 , ,  ~rs (which depend on the squares 
of the OHAOs qS~, q~s) are less acutely dependent on the orthogonalization tech- 
nique than the H,~. 
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Fig. 5. Effect of symmetrical orthogonaliza- 
tion on Y12 for S-O (sp 3 hybrids): full line 
exact; large dashed line non-orthogonal Y12; 
small dashed line Eq. (27) (the vertical line is 
the equilibrium S-O distance in SO,[ -) 

There is one class of  large electron-repulsion integral not touched by this analysis - 
the one-centre repulsion integrals 7r~ where q5~ and q5 s are centred on the same 
nucleus. These integrals show a pattern of  behaviour very similar to the one-centre 
integrals 7rr" When one (or both) of  q~, qS~ has a large-overlap bonding partner on 
an adjacent centre the integral p~ increases-  the amount of  increase being in the 
order 

no bonding partners < one bonding partner < two bonding partners. 

Thus, to reflect this trend and to recover the special case when r = s we use 

7,.s = ~/g(S2, . ' )g(  SZsli 7~ (27a) 

where 

- T  (3 9 ( $ 2 ) = 1 _ ~ [  1 $2 + $ 2 ) 1  

and ~b~, and qSs, are the bonding partners (if any, otherwise S~r, = 0 etc.) of  qS,, ~b~. 
The formulae (27) and (27a) give a very good approximation to the effect of  ortho- 
gonalization on the electron-repulsion integrals retained in the N D O  scheme. 
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Fig. 6. Effect of symmetrical orthogonaliza- 
tion on ~12 for C--C (sp 2 hybrids): lines as 
Fig. 5 (the vertical line is the C--C equilibrium 
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5. Lone Pairs and ~ Orbitals 

A lone pair HAO has no "bonding partner" and therefore the integrals Hrs are 
irrelevant here and the other approximations degenerate into the identity between 
the HAO and OHAO integrals since S = 0 in this case. There is no unique bonding 
partner in the case of n AOs involved in a de-localized system of double bonds so 
that our central assumption breaks down here. However, n-~ AO overlaps are 
always considerably smaller than a-a overlaps (typically about 0.2-0.3 compared 
to 0.6-0.8). Applied to electron-repulsion integrals this means changes of the order 
of 2% in going from yr~ to 7~. Similarly the size of the n-n overlaps make the appli- 
cation of the corrections for orthogonalization easier to apply - the success of the 
early semi-empirical methods for electronic structure of n systems depends on this 
fact. 

6. Applications: Numerical Calculations 

With the exception of the one-centre "exchange" integrals (4), we now have all the 
molecular integrals necessary to perform valence calculations within the NDO 
approximation scheme.5 These exchange integrals cannot be computed by methods 
based on the Mulliken approximation as the one-centre overlap integrals are zero. 
Also, using an orthogonalized hybrid basis these integrals are usually much smaller 
than the corresponding orthogonalized atomic orbital basis integrals: 

(bib2, blbz)=O.0671, (2s2p, 2s2p)=0.1596 

for CH zO where b 1 ,  b2 are orthogonalized sp  2 hybrids on carbon. We can therefore 
usefully test the integral approximations developed above in practice. 

The one-electron Hamiltonian for the valence orbitals was the kinetic energy 
matrix over a "standard" minimal basis of STOs transformed to an OHAO basis 
(sp 2 hybrids on C and O). The diagonal potential energy terms were calculated 
from (25) and the electron-repulsion integrals from (27). An SCF MO calculation 
was carried through which yielded a wavefunction which had a total overlap deter- 
minant of 0.93 with the full ab initio calculation, compared to an overlap of 0.95 if 
all the exact values are used for the retained integrals. 

The OHAO basis is particularly well adapted to a "bond-pair" description of the 
electronic structure of molecules. Thus an SCGF [8-1 calculation was carried out 
for CH20 using the same molecular integrals. The resulting total wavefunction had 
a total overlap of 0.954 with the corresponding ab initio calculation. This latter 
result is not too surprising since, in the SCGF approach, only the "bonding part- 
ner" Hrs are used. That is the SCGF method is particularly suited to use in con- 
junction with NDO schemes since even the full ab initio calculation requires only a 
fraction of molecular integrals; because of the 2 x 2 "blocked" form of the charge 
and bond-order matrix. The SCFMO method, on the other hand, in its ab initio 
form requires all the molecular integrals so that NDO schemes are potentially 

5 The most widely used class of NDO schemes ('~CNDO"-type) uses only integrals (1-3). 



304 D.B. Cook 

more severe approximations in this model which contains no chemical ideas about 
the large-scale structure of the charge and bond-order matrix. 

7. The Interpretation of Orthogonal-Basis "Bonding" Integrals 

Both in the LiH example given above and in the CH20 case used in the previous 
section it is noticeable that the use of Trs in place of Hr~ always gives a number of 
greater magnitude than the true value for bonded partners ~ ,  ~s. That is 

IT,.sl>lH,.sl (both T~, Hrs<0) 

for ~b,, ~b~ bonded. The actual size of the difference varies from bond to bond, of 
course. This means that, in the OHAO basis where 

H,~ = L~ + Vrs (28) 

Vrs> 0 for ~br, q~ "bonded". 

(Our approximation has, of course, been to set the corresponding V~s = 0). In the 
orthogonalized basis therefore, there can be no question of an interpretation of the 
bonding parameters as giving a quantitative measure of the binding effect of an 
electron in the potential field of two nuclei. This interpretation is the usual one and 
is based on the signs of the contributions to Hrs in the non-orthogonal basis: T,~ > 0 
and V,~ < 0. In this view, orthogonalization of the basis is simply a technical device 
necessary in order to solve the equations but of no scientific value. In the case of the 
single-determinant molecular orbital method (ab initio, using all integrals) there is 
no advantage in using an orthogonalized basis since the results are invariant. 
However almost all other formulations of the problem of molecular electronic 
structure (CI, VB) are scarcely feasible in a non-orthogonal basis. Also the use of an 
NDO scheme makes even the MO method basis dependent [1]. Thus it is of con- 
siderable interest to pursue the interpretation of the OHAO one-electron integrals. 
This matter will be taken up elsewhere. The simplest possible justification for 
V,~ ~ 0 is the charge-density interpretation of the orthogonality condition itself: 

f dvqL s=0 

implies that charge distribution ~b.~b s contains no net charge. While this implies that 
potential energy integrals of the form 

will be zero if the sources of the potential are all external to ~b,, q~s, it does not 
satisfactorily explain the observed fact that V~s > O. 

8. Conclusion 

The use of one simple idea (the pairwise overlap of hybrid atomic orbitals) a well- 
tried approximation (the Mulliken approximation) and a standard technique (sym- 
metrical orthogonalization) leads to a self-consistent scheme for the numerical 
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evaluation of the principal integrals required in the approximate calculation of 
molecular electronic structure. No use has been made of any specific model of 
molecular electronic structure - the integral formula can be used in any orbital- 
basis expansion technique (MO, CI, VB): in particular none of the approximations 
is dependent on the MO method. The integrals are approximations to molecular 
integrals over an explicitly-defined OHAO basis- they are not parameters and 
contain no empirical factors. 

The development of the approximation scheme has thrown into sharp relief the 
necessity of a careful analysis of the physical interpretation of the OHAO basis and 
(particularly) the "bonding integrals" over this basis (the Hrs). The usual potential- 
energy interpretation of these numbers has been shown to be quite wrong since 
V,~ > 0. There are striking analogies between the changes in molecular integrals and 
the "orbital contraction" effects used by Ruedenberg in his persuasive analysis of 
chemical bond formation. 

Finally a word about the Mulliken approximation itself. The formal approximation 
is (12) 

but in fact, taken literally as an approximation to the function ~9~o s this approxi- 
mation is grotesquely bad as the evaluation of both sides of (12) for the two ls AOs 
of H 2 will show. But the approximate evaluation of the molecular integrals of H 2 
using the Mulliken approximation gives very good answers. Thus the Mulliken 
approximation (12) is in fact a convenient way of systematizing an integralapproxi- 
mation scheme - the molecular integrals being much less sensitive to approximation 
than the factors in the integrand. 
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